ARIMA-GARCH and unobserved component models with GARCH disturbances: Are their prediction intervals different?∗
نویسندگان
چکیده
We analyze the effects on prediction intervals of fitting ARIMA models to series with stochastic trends, when the underlying components are heteroscedastic. We show that ARIMA prediction intervals may be inadequate when only the transitory component is heteroscedastic. In this case, prediction intervals based on the unobserved component models tend to the homoscedastic intervals as the prediction horizon increases. However, prediction intervals based on the ARIMA model incorporate the unit root, so they diverge for ever from the homoscedastic intervals. We focus on the local level and smooth trend models. All the results are illustrated with simulated and real time series.
منابع مشابه
Traffic Modeling and Prediction using ARIMA/GARCH Model
The predictability of network traffic is a significant interest in many domains such as congestion control, admission control, and network management. An accurate traffic prediction model should have the ability to capture prominent traffic characteristics, such as long-range dependence (LRD) and self-similarity in the large time scale, multifractal in small time scale. In this paper we propose...
متن کاملNetwork Traffic Modeling and Prediction with ARIMA/GARCH
The predictability of network traffic is a significant interest in many domains such as congestion control, admission control, and network management. An accurate traffic prediction model should have the ability to capture prominent traffic characteristics, such as long-range dependence (LRD) and self-similarity in the large time scale, multifractal in small time scale. In this paper we propose...
متن کاملThe Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملArima/garch (1,1) Modelling and Forecasting for a Ge Stock Price Using R
This article attempts to present a basic method of time series analysis, modelling and forecasting performance of ARIMA, GARCH (1,1) and mixed ARIMA GARCH (1,1) models using historical daily close price downloaded through the yahoo finance website from the NASDAQ stock exchange for GE company (USA) during the period of 2001 to 2014. This paper also presents a brief analysis technique introducti...
متن کاملمدلسازی و پیشبینی نوسانات بازار سهام با استفاده از مدل انتقالی گارچ مارکف
In this study we compare a set of Markov Regime-Switching GARCH models in terms of their ability to forecast the Tehran stock market volatility at different time intervals. SW-GARCH models have been used to avoid the excessive persistence that usually found in GARCH models. In SW-GARCH models all parameters are allowed to switch between a low or high volatility regimes. Both Gaussian and fat-...
متن کامل